Scalable data processing,
NoSQL

Gergely Lukacs
Pazmany Péter Catholic University
Faculty of Information Technology

Budapest, Hungary
lukacs@itk.ppke.hu

NoSQL databases

How much data?
Google processes 20 PB a day (2008)

Wayback Machine has 3 PB + 100 TB/month (3/2009)
Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
eBay has 6.5 PB of user data + 50 TB/day (5/2009)
CERN'’s LHC will generate 15 PB a year (??)

O O O O 43

Amount of data doubles
every 20 months

Global Digital Information Created & Shared, 2005 - 2015E
8

rkiLosyTe RETEH

o

°

- 3

82 6

5% | MEGABYTE

ég | GIGABYTE 1,600,000,00¢0

csy 4

§§ | TERABYTE 1,000,000,000,000

=5 2 I NIATTI8030 ©.c0c,000,000,000,000

%ﬁ

o P —— = | . . I I EXABYTE 1,600,000,000,000,000,000
2005 2007 2009 2011 2013E 2015E SRV VAANSN 1,000,000,000,000,000,000,000

KPCB

NoSQL: The Name

= “SQL” = Traditional relational DBMS

= efficient, reliable, convenient, and safe multi-user
storage of and access to massive amounts of
persistent data

= Recognition over past decade or so:
Not every data management/analysis problem
IS best solved using a traditional relational
DBMS

= Web-based systems!

“NoSQL” (“No SQL”)

= Not using traditional relational DBMS
= Not Only SQL

NoSQL — Definition ?

 Heterogeneous group of concepts,
systems

— Key-value stores
— Wide column stores
— Document stores

NoSQL — Advantages

* Depend on system/category
(heterogeneous concept!!)

* Higher performance

» Easy distribution of data on nodes
(sharding): scalability, fault tolerance

 Flexibility: schema free data model
* Simpler administration

NoSQL — Methods

« No normalied relational data model

* Transaction management relaxed (ACID-

>BASE), fewer garanties

— Basically available: Nodes in the a distributed
environment can go down, but the whole system
shouldn’t be affected.

— Soft State (scalable): The state of the system and
data changes over time.

— Eventual Consistency: Given enough time, data will
be consistent across the distributed system.

* Less powerful querying

CAP Theorem

* Also known as Brewer’s Theorem by Prof.
Eric Brewer, published in 2000 at University
of Berkeley.

» “Of three properties of a shared data system:
data consistency, system availability and
tolerance to network partitions, only two can
be achieved at any given moment.”

* Proven by Nancy Lynch et al. MIT labs.

 hittp://Iwww.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

CAP Semantics

* Consistency: Clients should read the
same data. There are many levels of
consistency.

— Strict Consistency — RDBMS.
— Tunable Consistency — Cassandra.
— Eventual Consistency — Amazon Dynamo.

 Availablility: Data to be available.

 Partition Tolerance: Data to be partitioned
across network segments due to network
failures.

Visual Guide to NoSQL Systems

Evaﬂa?"iw: Relational (comparison)

ach client can

always read Data Models Key-Value _

and write Column-Oriented/Tabular
' Document-Oriented

CA

RDBMSs Aster Data
(MySQL, Greenplum
Postgres, Vertica

AP

Dynamo Cassandra
Voldemort SimpleDB
Tokyo Cabinet CouchDB

etc) KAI Riak
Consistency: CP I Partition Tolerance:
All clients always . The system works
have the same view BigTable MongoDB Berkeley DB well despite physical
of the data. Hypertable Terrastore MemcacheDB network partitions.

Hbase Scalaris Redis

A Simple Proof

Consistent and available
No partition.

App
Data Data
R R
N N
A B

A Simple Proof
Avalilable and partitioned
Not consistent, we get back old data.

App

Data Old Data

(> (>
X

B

NS NS

A Simple Proof

Consistent and partitioned
Not available, waiting...

App
New Data
Wait for new data
A A
A B

NS NS

Google Cloud Spanner

Spanner is Google’s highly available global SQL database [CDE+12]. It manages
replicated data at great scale, both in terms of size of data and volume of transactions. It
assigns globally consistent real-time timestamps to every datum written to it, and clients
can do globally consistent reads across the entire

database without locking.

The CAP theorem [Brel2] says that you can only have two of the three desirable
properties of:

« C: Consistency, which we can think of as serializability for this discussion;
 A: 100% availability, for both reads and updates;
« P: tolerance to network partitions.

This leads to three kinds of systems: CA, CP and AP, based on what letter you leave out.
Note that you are not entitled to 2 of 3, and many systems have zero or one of the
properties. For distributed systems over a “wide area’, it is generally viewed that
partitions are inevitable, although not necessarily common [BK14]. Once you believe
that partitions are inevitable, any distributed system must be prepared to forfeit either
consistency (AP) or availability (CP), which is not a choice anyone wants to make. In fact,
the original point of the CAP theorem was to get designers to take this tradeoff seriously.
But there are two important caveats: first, you only need forfeit something during an
actual partition, and even then there are many mitigations (see the “12 years” paper
[Brel2]). Second, the actual theorem is about 100% availability, while the interesting 14
discussion here is about the tradeoffs involved for realistic high availability.

Key-value stores

15

Examples for Data

Extremely simple interface
= Data model: (key, value) pairs

userl923 color Red

Color Red userl9?3 age 18

ﬂge 18 user3371_color Blue
~1ze LETEE userd3d4 color Brackish
L LS userl923_height &' @~
Title The Brown Dog user3371_age 34

= Operations
* Insert(key,value)
= Fetch(key)
» Update(key, value)
* Delete(key)

16

Key-Value Stores

Implementation: efficiency, scalability, fault-tolerance
= Records distributed to nodes based on key
= Replication
= Single-record transactions, “eventual consistency”

52 systems in ranking, April 2016

Rank Score

Apr Mar Apr DBMS Database Model Apr Mar Apr
2016 2016 2015 2016 2016 2015
1. 1. 1. Redis &3 Key-value store 111.24 +5.02 +16.69
2. 2 2. Memcached Key-value store 28.01 -1.23 -6.04
3. 3 3. Amazon DynamoDB E3 Multi-model @ 23.12 +0.89 +8.54
4. 4 4. Riak KV 3 Key-value store 11.49 -0.60 -1.60
5. 5. #A6. Hazelcast Key-value store 6.68 -0.13 +1.00
6. 6. 5 Ehcache Key-value store 6.46 -0.25 -1.25
7. 7. 8. OrientDB Multi-model g 6.31 -0.35 +2.93
8. 8. Ao 11. Aerospike Key-value store 4.20 +0.10 +1.71
9. 4 10. 9. Oracle Coherence Key-value store 3.13 -0.24 -0.19
10. ¥ 9. & 7. Berkeley DB Key-value store 3.06 -0.38 -0.86
11. 11. ¢ 10. Amazon SimpleDB Key-value store 2.96 +0.05 -0.24

12. 12. 12. Oracle NoSQL Key-value store 2.51 -0.02 +0.39

Document stores

18

Document Stores

* Like Key-Value
Stores except

{

uSELd e

Ihapat: YApait Goenka®,

i [

<~ Record 1

Major: “Physics®

value Is document i’ "
— XML

"pape: *Spita Pallodr,

< —1 Record 2

Mpdajort: “Chepistiy"

3
{

YAML

"Hame': “Rajeev Sen",

= — Record 3

JSON

"ajor': “Mathepatics”

}

BSON

binary forms
PDF

Excel, and so on).

Denotes name / value

pair

Microsoft Office documents (MS Word,

http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/YAML
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/BSON

Document Stores

*Data model: (key, document) pairs

=Basic operations:

= Insert(key,document), Fetch(key),
Update(key), Delete(key)

= Also Fetch based on document

contents

39 systems in ranking, April 2016

Rank Score
Apr Mar Apr DBMS Database Model Apr Mar Apr
2016 2016 2015 2016 2016 2015
1. 1. 1. MongoDB E3 Document store 312.44 +7.11 +33.85
2 2. A 3. Couchbase [} Document store 25.02 -0.78 -0.55
3. 4. A4 Amazon DynamoDB E3 Multi-model @ 23.12 +0.89 +8.54
4. ¥ 3. ¥ 2. CouchDB Document store 22.36 -1.02 -4.58
5 5. 5. MarkLogic Multi-model g3 9.12 -0.25 -1.09

MongoDB

High performance
High avallability
Horizontal scalability

— Sharding: distributing data across a cluster of

machines

Rich query language
— Data aggregation

— Text search

— Geospatial queries

21

MongoDB - aggregation

* Aggregation pipeline

Collection

db.orders.aggregate([
$match stage——» { $match: { status: "A" } 3,
$group stage—— { $group: { _id: "$cust_id",total: { $sum: "$amount” } } .

t cust_id: "A123"
amount: 528,
status: "A"
¥ ‘ cust_id: "A123"
- .)
amount: S@8, Results
{ status: "A"
cust_id: "A123", 3 {
amount @ 250, —id: "A123",
status: "A" total: 75@
3 { ¥
cust_id: "A123",
{ Smatch » o $group
cust_id: "B212", 1 {
amount : 288,
status: A" total: 260
1 { }
amount: 288,
i status: “A"
cust_id: "A123", 1
amount : 388,
status: "D"
}

22

MongoDB - aggregation

* Aggregation MapReduce

Collection
Y
db.orders.mapReduce(
map — function() { emit(this.cust_id, this.amount); 7},

reduce ——= function(key, values) { return Array.sum(values) 3},

query —= query: { status: "A" },
output —» out: "order_totals”
{
cust_id: "A123",
amount: 5@9,
status: "A"
3 {
cust_id: "A123",
amount: 588,
{ status: "A"
cust_id: "A123",] {
amount: 250, . - _id: "A123",
status: "A" { ‘{ A123": [see, 250]} ey, value: 750
1
cust_id: "A123",
amount: 250, _p-
{ query status: "A" map
cust_id: "B212", } (
amount: 200, |{ - 00 — i v,
status: "A" value: 200
3 t }
amount: 288,

; g ardar totals

23

MongoDB - aggregation

* Single purpose aggregation operations
— DDb.collection.count()
— DDb.collection.group()
— DDb.collection.distinct()

MongoDB — geospatial queries

— - [EENEER==5=

~
. Find Restaurants with Geos... * 'l\+

i) @ | https://docs.mongodb.org/manual/tuterial/geospatial-tutorial/ E1| ¢ C®5earch ﬁ’ =] 43 & © z D ~ @ =

e Grapefon @] Most Visited @ Getting Started @ MMO - Cimlap | | headsets_for_rorhscha.. | | szerverek

| »

m

i
.mongo DOCS DRIVERS UNIVERSITY COMMUNITY BLOG ENTERPRISE BN (¥

ForGIANT oex —— | 3
Download Contal

- Indexes > 2dsphere Indexes > Find Restaurants with Geospatial Queries
Introduction P P 4

Installation Find Restaurants with Geospatial Queries

The mongo Shell
On this page

MongoDB CRUD Operations

* Overview

Aggregation « Differences Between Flat and Spherical Geometry

* Distortion GET THE MONGODB

Jzdzad e Searching for Restaurants

Data Models
REFERENCE CARDS

Administration Overview

Indexes MongoDB's geospatial indexing allows you to efficiently execute spatial queries on a collection that contains

Single Field Indexes geospatial shapes and points. This tutorial will briefly introduce the concepts of geospatial indexes, and then

Compound Indexes demonstrate their use with $geoWithin, $geoIntersects, and geoNear.

+ Multikey Indexes
To showcase the capabilities of geospatial features and compare different approaches, this tutorial will guide

you through the process of writing queries for a simple geospatial application.

https://university.mongodb.com

Wide column stores

« Key-value database

* Columns: name, format can vary from row
to row

* Apache Cassandra

26

