
Scalable data processing,

NoSQL

Gergely Lukács

Pázmány Péter Catholic University

Faculty of Information Technology

Budapest, Hungary

lukacs@itk.ppke.hu

NoSQL databases

How much data?
Google processes 20 PB a day (2008)

Wayback Machine has 3 PB + 100 TB/month (3/2009)

Facebook has 2.5 PB of user data + 15 TB/day (4/2009)

eBay has 6.5 PB of user data + 50 TB/day (5/2009)

CERN’s LHC will generate 15 PB a year (??)

Amount of data doubles

every 20 months

NoSQL: The Name

▪ “SQL” = Traditional relational DBMS

▪efficient, reliable, convenient, and safe multi-user
storage of and access to massive amounts of
persistent data

▪ Recognition over past decade or so:
Not every data management/analysis problem
is best solved using a traditional relational
DBMS

▪Web-based systems!

▪“NoSQL” (“No SQL”)

▪Not using traditional relational DBMS

▪Not Only SQL

NoSQL – Definition ?

• Heterogeneous group of concepts,

systems

– Key-value stores

– Wide column stores

– Document stores

– …

5

NoSQL – Advantages

• Depend on system/category

(heterogeneous concept!!)

• Higher performance

• Easy distribution of data on nodes

(sharding): scalability, fault tolerance

• Flexibility: schema free data model

• Simpler administration

6

NoSQL – Methods

• No normalied relational data model

• Transaction management relaxed (ACID-

>BASE), fewer garanties
– Basically available: Nodes in the a distributed

environment can go down, but the whole system

shouldn’t be affected.

– Soft State (scalable): The state of the system and

data changes over time.

– Eventual Consistency: Given enough time, data will

be consistent across the distributed system.

• Less powerful querying 7

CAP Theorem

• Also known as Brewer’s Theorem by Prof.
Eric Brewer, published in 2000 at University
of Berkeley.

• “Of three properties of a shared data system:
data consistency, system availability and
tolerance to network partitions, only two can
be achieved at any given moment.”

• Proven by Nancy Lynch et al. MIT labs.

• http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

CAP Semantics

• Consistency: Clients should read the
same data. There are many levels of
consistency.

– Strict Consistency – RDBMS.

– Tunable Consistency – Cassandra.

– Eventual Consistency – Amazon Dynamo.

• Availability: Data to be available.

• Partition Tolerance: Data to be partitioned
across network segments due to network
failures.

10

A Simple Proof

A B

Data Data

Consistent and available

No partition.

App

A Simple Proof

A B

Data Old Data

Available and partitioned

Not consistent, we get back old data.

App

A Simple Proof

A B

New Data

Wait for new data

Consistent and partitioned

Not available, waiting…

App

Google Cloud Spanner
Spanner is Google’s highly available global SQL database [CDE+12]. It manages

replicated data at great scale, both in terms of size of data and volume of transactions. It

assigns globally consistent real-time timestamps to every datum written to it, and clients

can do globally consistent reads across the entire

database without locking.

The CAP theorem [Bre12] says that you can only have two of the three desirable

properties of:

• C: Consistency, which we can think of as serializability for this discussion;

• A: 100% availability, for both reads and updates;

• P: tolerance to network partitions.

This leads to three kinds of systems: CA, CP and AP, based on what letter you leave out.

Note that you are not entitled to 2 of 3, and many systems have zero or one of the

properties. For distributed systems over a “wide area”, it is generally viewed that

partitions are inevitable, although not necessarily common [BK14]. Once you believe

that partitions are inevitable, any distributed system must be prepared to forfeit either

consistency (AP) or availability (CP), which is not a choice anyone wants to make. In fact,

the original point of the CAP theorem was to get designers to take this tradeoff seriously.

But there are two important caveats: first, you only need forfeit something during an

actual partition, and even then there are many mitigations (see the “12 years” paper

[Bre12]). Second, the actual theorem is about 100% availability, while the interesting

discussion here is about the tradeoffs involved for realistic high availability.
14

15

Key-value stores

Examples for Data

Extremely simple interface

▪ Data model: (key, value) pairs

▪ Operations
▪ Insert(key,value)
▪Fetch(key)
▪Update(key, value)
▪Delete(key)

16

Key-Value Stores

Implementation: efficiency, scalability, fault-tolerance

▪ Records distributed to nodes based on key

▪ Replication

▪ Single-record transactions, “eventual consistency”

18

Document stores

Document Stores

• Like Key-Value
Stores except
value is document
– XML

– YAML

– JSON

– BSON

– binary forms

• PDF

• Microsoft Office documents (MS Word,
Excel, and so on).

http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/YAML
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/BSON

Document Stores

▪Data model: (key, document) pairs
▪Basic operations:

▪ Insert(key,document), Fetch(key),
Update(key), Delete(key)

▪ Also Fetch based on document
contents

MongoDB

• High performance

• High availability

• Horizontal scalability

– Sharding: distributing data across a cluster of

machines

• Rich query language

– Data aggregation

– Text search

– Geospatial queries
21

MongoDB - aggregation

• Aggregation pipeline

22

MongoDB - aggregation

• Aggregation MapReduce

23

MongoDB - aggregation

• Single purpose aggregation operations

– Db.collection.count()

– Db.collection.group()

– Db.collection.distinct()

24

MongoDB – geospatial queries

25

Wide column stores

• Key-value database

• Columns: name, format can vary from row

to row

• Apache Cassandra

26

