

Scalable data processing, NoSQL

Gergely Lukács

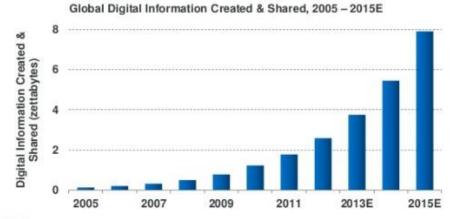
Pázmány Péter Catholic University Faculty of Information Technology Budapest, Hungary lukacs@itk.ppke.hu

NoSQL databases

How much data?

- □ Google processes 20 PB a day (2008)
- □ Wayback Machine has 3 PB + 100 TB/month (3/2009)
- □ Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
- □ eBay has 6.5 PB of user data + 50 TB/day (5/2009)
- □ CERN's LHC will generate 15 PB a year (??)

Amount of data doubles every 20 months



WHAT IS	• ZETTAEVTE?
¹ KILOBYTE	1,000
¹ MEGABYTE	1,000,000
¹ GIGABYTE	1,000,000,000
¹ TERABYTE	1,000,000,000,000
¹ PETABYTE	1,000,000,000,000,000
¹ EXABYTE	1,000,000,000,000,000,000
¹ ZETTABYTE	1,000,000,000,000,000,000,000

NoSQL: The Name

- "SQL" = Traditional relational DBMS
 - efficient, reliable, convenient, and safe multi-user storage of and access to massive amounts of persistent data
- Recognition over past decade or so: Not every data management/analysis problem is best solved using a traditional relational DBMS
 - Web-based systems!
- "NoSQL" ("No SQL")
 - Not using traditional relational DBMS
 - Not Only SQL

NoSQL – Definition ?

- Heterogeneous group of concepts, systems
 - Key-value stores
 - Wide column stores
 - Document stores

NoSQL – Advantages

 Depend on system/category (heterogeneous concept!!)

- Higher performance
- Easy distribution of data on nodes (sharding): scalability, fault tolerance
- Flexibility: schema free data model
- Simpler administration

NoSQL – Methods

- No normalied relational data model
- Transaction management relaxed (ACID->BASE), fewer garanties
 - Basically available: Nodes in the a distributed environment can go down, but the whole system shouldn't be affected.
 - Soft State (scalable): The state of the system and data changes over time.
 - Eventual Consistency: Given enough time, data will be consistent across the distributed system.
- Less powerful querying

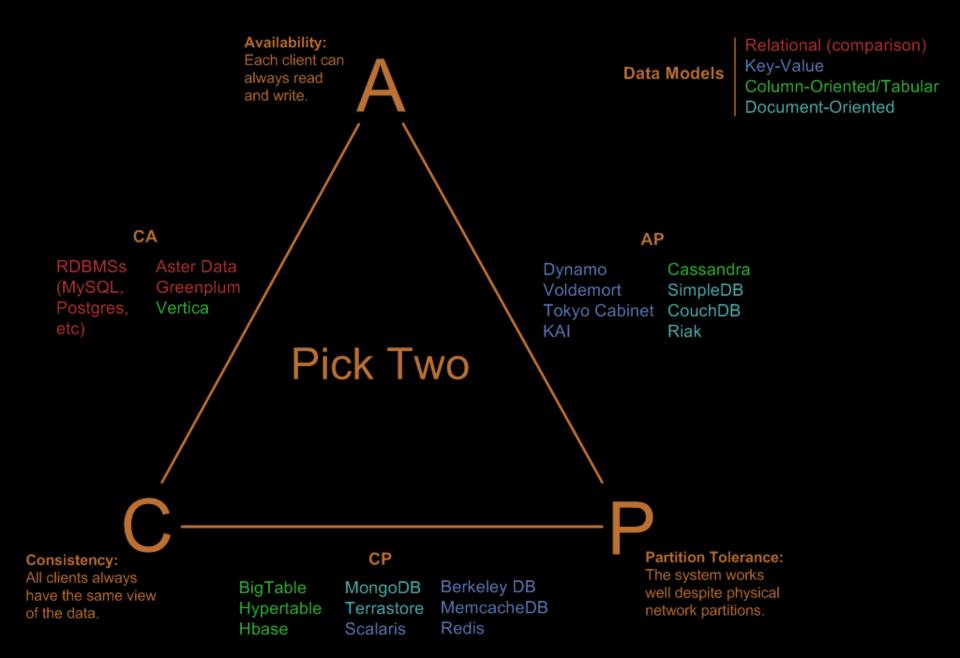
CAP Theorem

- Also known as Brewer's Theorem by Prof. Eric Brewer, published in 2000 at University of Berkeley.
- "Of three properties of a shared data system: data consistency, system availability and tolerance to network partitions, only two can be achieved at any given moment."
- Proven by Nancy Lynch et al. MIT labs.
- <u>http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf</u>

CAP Semantics

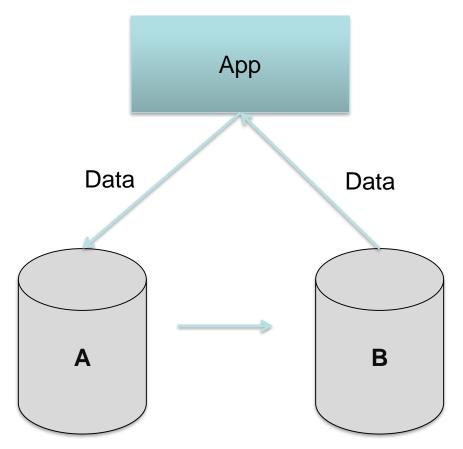
- Consistency: Clients should read the same data. There are many levels of consistency.
 - Strict Consistency RDBMS.
 - Tunable Consistency Cassandra.
 - Eventual Consistency Amazon Dynamo.
- Availability: Data to be available.
- Partition Tolerance: Data to be partitioned across network segments due to network failures.

Visual Guide to NoSQL Systems



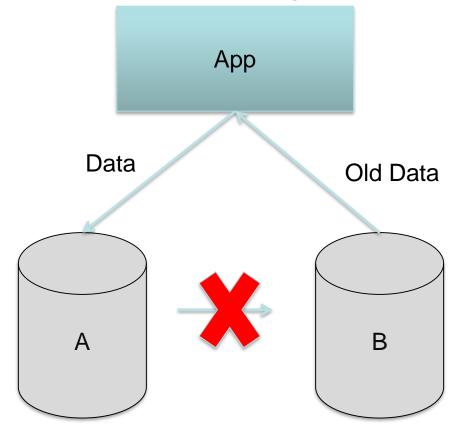
A Simple Proof

Consistent and available No partition.



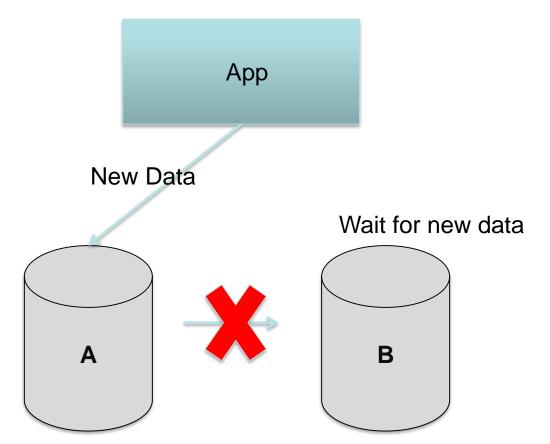
A Simple Proof

Available and partitioned Not consistent, we get back old data.



A Simple Proof

Consistent and partitioned Not available, waiting...



Google Cloud Spanner

Spanner is Google's highly available global SQL database [CDE+12]. It manages replicated data at great scale, both in terms of size of data and volume of transactions. It assigns globally consistent real-time timestamps to every datum written to it, and clients can do globally consistent reads across the entire

database without locking.

The CAP theorem [Bre12] says that you can only have two of the three desirable properties of:

- C: Consistency, which we can think of as serializability for this discussion;
- A: 100% availability, for both reads and updates;
- P: tolerance to network partitions.

This leads to three kinds of systems: CA, CP and AP, based on what letter you leave out. Note that you are not entitled to 2 of 3, and many systems have zero or one of the properties. For **distributed systems** over a "wide area", it is generally viewed that **partitions are inevitable**, although not necessarily common [BK14]. Once you believe that partitions are inevitable, any distributed system must be prepared to forfeit either consistency (AP) or availability (CP), which is not a choice anyone wants to make. In fact, the original point of the CAP theorem was to get designers to take this tradeoff seriously. But there are two important caveats: first, you **only** need forfeit something **during an actual partition,** and even then there are many mitigations (see the "12 years" paper [Bre12]). Second, the actual theorem is about 100% availability, while the interesting 14 discussion here is about the **tradeoffs involved for realistic high availability**.

Key-value stores

Examples for Data

Extremely simple interface

Data model: (key, value) pairs

g

user1923_color	Red
user1923_age	18
user3371_color	Blue
user4344_color	Brackish
user1923_height	6' 0"

Operations
Insert(key,value)
Fetch(key)
Update(key, value)
Delete(key)

Key-Value Stores

Implementation: efficiency, scalability, fault-tolerance

- Records distributed to nodes based on key
- Replication
- Single-record transactions, "eventual consistency"

52 systems in ranking, April 2016

Rank		C C			Score			
Apr 2016	Mar 2016	Apr 2015	DBMS	Database Model	Apr 2016	Mar 2016	Apr 2015	
1.	1.	1.	Redis 🚹	Key-value store	111.24	+5.02	+16.69	
2.	2.	2.	Memcached	Key-value store	28.01	-1.23	-6.04	
3.	3.	3.	Amazon DynamoDB 🖪	Multi-model 🚺	23.12	+0.89	+8.54	
4.	4.	4.	Riak KV 🗄	Key-value store	11.49	-0.60	-1.60	
5.	5.	1 6.	Hazelcast	Key-value store	6.68	-0.13	+1.00	
6.	6.	4 5.	Ehcache	Key-value store	6.46	-0.25	-1.25	
7.	7.	1 8.	OrientDB	Multi-model 🚺	6.31	-0.35	+2.93	
8.	8.	↑ 11.	Aerospike	Key-value store	4.20	+0.10	+1.71	
9.	1 0.	9.	Oracle Coherence	Key-value store	3.13	-0.24	-0.19	
10.	4 9.	4 7.	Berkeley DB	Key-value store	3.06	-0.38	-0.86	
11.	11.	4 10.	Amazon SimpleDB	Key-value store	2.96	+0.05	-0.24	
12.	12.	12.	Oracle NoSQL	Key-value store	2.51	-0.02	+0.39	

Document stores

Document Stores

- Like Key-Value "Students": [Stores except "Name": "Amit Goenka", Record 1 "Major": "Physics" value is document » – XML "Name": "Smita Pallod", Record 2 "Major": "Chemistru – YAML "Name": "Rajeev Sen", Record 3 **JSON** "Maior": "Mathematics" 1 Denotes name / value BSON ł pair
 - binary forms
 - PDF
 - Microsoft Office documents (MS Word, Excel, and so on).

Document Stores

Data model: (key, document) pairs

- Basic operations:
 - Insert(key,document), Fetch(key), Update(key), Delete(key)
- Also Fetch based on document contents

39 systems in ranking, April 2016

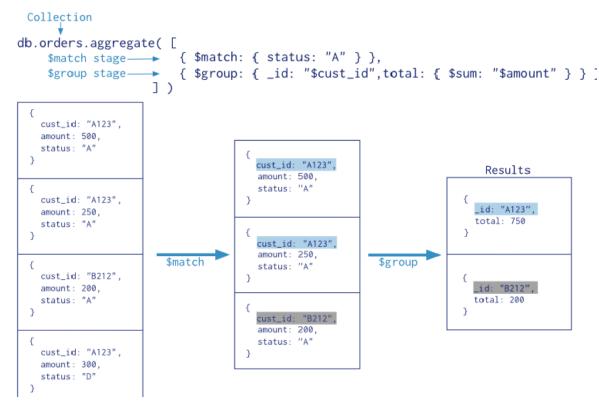
Rank		:			Score		
Apr 2016	Mar 2016		DBMS	Database Model	Apr 2016	Mar 2016	Apr 2015
1.	1.	1.	MongoDB 🚹	Document store	312.44	+7.11	+33.85
2.	2.	1 3.	Couchbase 🞛	Document store	25.02	-0.78	-0.55
3.	1 4.	1 4.	Amazon DynamoDB 🗄	Multi-model 🚺	23.12	+0.89	+8.54
4.	4 3.	4 2.	CouchDB	Document store	22.36	-1.02	-4.58
5.	5.	5.	MarkLogic	Multi-model 👔	9.12	-0.25	-1.09

MongoDB

- High performance
- High availability
- Horizontal scalability
 - Sharding: distributing data across a cluster of machines
- Rich query language
 - Data aggregation
 - Text search
 - Geospatial queries

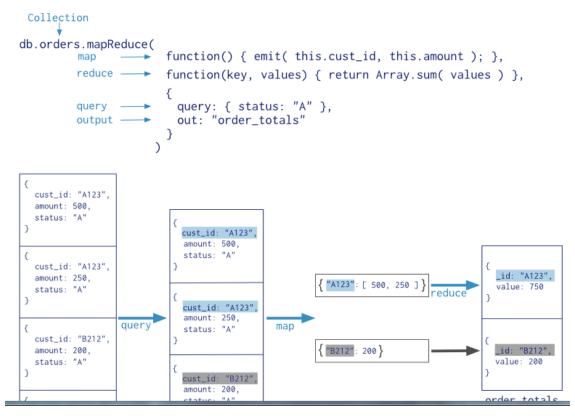
MongoDB - aggregation

Aggregation pipeline



MongoDB - aggregation

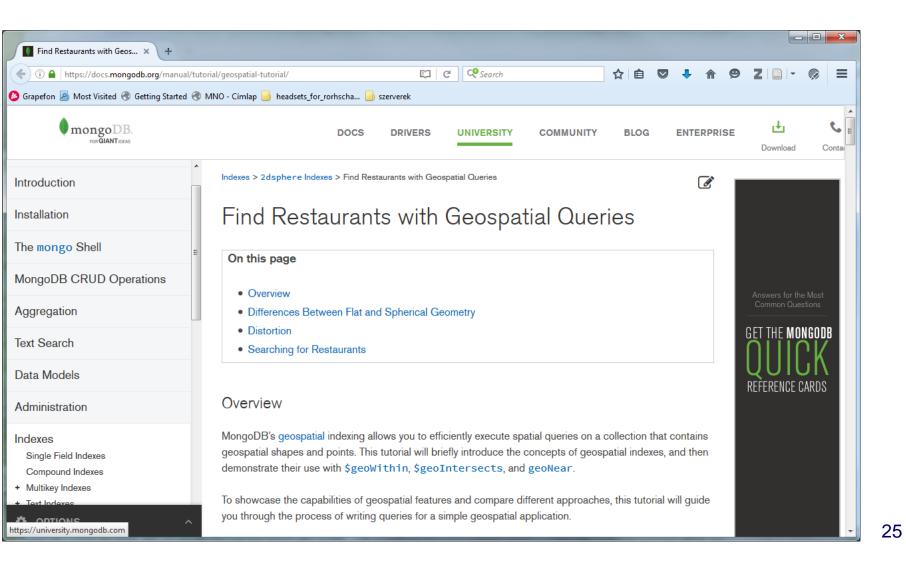
Aggregation MapReduce



MongoDB - aggregation

- Single purpose aggregation operations
 Db.collection.count()
 - Db.collection.group()
 - Db.collection.distinct()

MongoDB – geospatial queries



Wide column stores

- Key-value database
- Columns: name, format can vary from row to row

Apache Cassandra

